Environmental Protection Agency Table 2G-6. Yaw Angle Calibration Tester(s): ___ | Probe ID: | | | Affiliat | Affiliation: | | | | |----------------|--|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--| | Test Location: | | | Date: _ | | | | | | [| | Repetition 1 | | Repe | petition 2 | | | | | Nominal
Velocity
Setting in
m/sec
(ft/sec) | θ _{null}
(degrees) | R _{SLO}
(degrees)* | θ _{null}
(degrees) | R _{SLO}
(degrees)* | Average of all recorded R_{SLO} values: Table 2G-7. Determining the Magnitude of Reference Scribe Line Offset | Probe/Angle-Measuring Device | Magnitude of R _{SLO} | | | |--|-------------------------------|--|--| | Type S probe with inclinometer | θ_{null} | | | | Type S probe with protractor wheel and pointer | 90° - θ _{null} | | | | 3-D probe with inclinometer | 90° - θ _{null} | | | | 3-D probe with protractor wheel and pointer | θ_{null} | | | ^{*} Include magnitude and algebraic sign in accordance with section 10.5.6. Table 2G-8. Probe Calibration for Method 2G | Wind Tunnel Facility: | |--| | Wind Tunnel Location: | | Probe Type: | | Probe ID: | | Probe Calibration Date: | | Test Point Location: | | Ambient Temperature (°F): | | Barometric Pressure (P _{bar}): | | | Low
Velocity Calibra | | ion Pitot | Tested Probe | | | |------------|-------------------------|--------------------------------|---------------|---|----------------------------------|--| | Repetition | Setting
(ft/sec) | ΔP_{std} (in. H_2O) | Temp.
(°F) | ΔP or P_1 - P_2 (in. H_2O) | Yaw Angle
(°) | Calculated
C _p or F ₂ | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | | | | | Avera | age (C _{p(avg-low)}) = | | | | High
Velocity | Calibration Pitot | | Tested Probe | | | |------------|---------------------|--------------------------------|---------------|--|----------------------------------|--| | Repetition | Setting
(ft/sec) | ΔP_{std} (in. H_2O) | Temp.
(°F) | $\Delta P \text{ or } P_1 - P_2$ (in. H_2O) | Yaw Angle | Calculated
C _p or F ₂ | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | | | | | Averaş | ge (C _{p(avg-high)}) = | | % Difference = $$\frac{C_{p(avg-low)} - C_{p(avg-high)}}{C_{p(avg-low)}} \times 100\% = ____\%$$ Note: (1) The percent difference between the low and high velocity setting C_p values shall be within ± 3 percent. (2) If calibrating a 3-D probe for this method, the pitch angle setting must be 0° .